Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.633
Filtrar
1.
J Agric Food Chem ; 72(11): 5595-5608, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446412

RESUMO

Metabolic resistance to the maize-selective, HPPD-inhibiting herbicide, mesotrione, occurs via Phase I ring hydroxylation in resistant waterhemp and Palmer amaranth; however, mesotrione detoxification pathways post-Phase I are unknown. This research aims to (1) evaluate Palmer amaranth populations for mesotrione resistance via survivorship, foliar injury, and aboveground biomass, (2) determine mesotrione metabolism rates in Palmer amaranth populations during a time course, and (3) identify mesotrione metabolites including and beyond Phase I oxidation. The Palmer amaranth populations, SYNR1 and SYNR2, exhibited higher survival rates (100%), aboveground biomass (c.a. 50%), and lower injury (25-30%) following mesotrione treatment than other populations studied. These two populations also metabolized mesotrione 2-fold faster than sensitive populations, PPI1 and PPI2, and rapidly formed 4-OH-mesotrione. Additionally, SYNR1 and SYNR2 formed 5-OH-mesotrione, which is not produced in high abundance in waterhemp or naturally tolerant maize. Metabolite features derived from 4/5-OH-mesotrione and potential Phase II mesotrione-conjugates were detected and characterized by liquid chromatography-mass spectrometry (LCMS).


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Amaranthus , Cicloexanonas , Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Amaranthus/metabolismo , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Resistência a Herbicidas , Corante Amaranto/metabolismo
2.
World J Microbiol Biotechnol ; 40(5): 137, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504029

RESUMO

The present study evaluated the performance of the fungus Trichoderma reesei to tolerate and biodegrade the herbicide diuron in its agrochemical presentation in agar plates, liquid culture, and solid-state fermentation. The tolerance of T. reesei to diuron was characterized through a non-competitive inhibition model of the fungal radial growth on the PDA agar plate and growth in liquid culture with glucose and ammonium nitrate, showing a higher tolerance to diuron on the PDA agar plate (inhibition constant 98.63 mg L-1) than in liquid culture (inhibition constant 39.4 mg L-1). Diuron biodegradation by T. reesei was characterized through model inhibition by the substrate on agar plate and liquid culture. In liquid culture, the fungus biotransformed diuron into 3,4-dichloroaniline using the amide group from the diuron structure as a carbon and nitrogen source, yielding 0.154 mg of biomass per mg of diuron. A mixture of barley straw and agrolite was used as the support and substrate for solid-state fermentation. The diuron removal percentage in solid-state fermentation was fitted by non-multiple linear regression to a parabolic surface response model and reached the higher removal (97.26%) with a specific aeration rate of 1.0 vkgm and inoculum of 2.6 × 108 spores g-1. The diuron removal in solid-state fermentation by sorption on barley straw and agrolite was discarded compared to the removal magnitude of the biosorption and biodegradation mechanisms of Trichoderma reesei. The findings in this work about the tolerance and capability of Trichoderma reesei to remove diuron in liquid and solid culture media demonstrate the potential of the fungus to be implemented in bioremediation technologies of herbicide-polluted sites.


Assuntos
Celulase , Herbicidas , Hypocreales , Trichoderma , Fermentação , Trichoderma/metabolismo , Diurona/metabolismo , Ágar/metabolismo , Herbicidas/metabolismo , Biodegradação Ambiental , Celulase/metabolismo
3.
J Environ Sci Health B ; 59(5): 215-222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38459769

RESUMO

Atrazine (ATZ) is the third most sold herbicide in Brazil, occupying the seventh position between most widely used pesticides. Due to its easy outflow, low reactivity and solubility, moderate adsorption to organic matter and clay, and long soil persistence, residual herbicide can be identified after long periods following application, and its usage has been prohibited in diverse countries. Amphibians are important bioindicators to assess impact of pesticide like atrazine, due to having a partial aquatic life cycle. This study had as objective to assess the response of bullfrog (Lithobates catesbeianus) tadpoles when exposed to this herbicide. Animals were exposed for a total of 168h to following concentrations: negative control, 40 µg/L, 200 µg/L, 2000 µg/L, 20000 µg/L of ATZ. Analysis of swimming activity was performed, and biochemical profile was assessed by analysis of blood and plasma glucose levels, urea, creatinine, cholesterol, HDL, triglycerides, glutamic pyruvic transaminase (GPT), alkaline phosphatase (AP), calcium, total proteins, phenol, peroxidase and polyphenol oxidase activity. Results exhibited malnutrition, anemia, likely muscle mass loss, and hepatic damage, indicating that ATZ can lead to an increase in energy to maintain homeostasis for animal survival.


Assuntos
Atrazina , Herbicidas , Praguicidas , Poluentes Químicos da Água , Animais , Herbicidas/metabolismo , Larva , Praguicidas/metabolismo , Rana catesbeiana/metabolismo , Poluentes Químicos da Água/metabolismo
4.
Curr Microbiol ; 81(5): 117, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492090

RESUMO

Atrazine is an important herbicide that has been widely used for weed control in recent decades. However, with the extensive use of atrazine, its residue seriously pollutes the environment. Therefore, the microbial degradation and detoxification of atrazine have received extensive attention. To date, the aerobic degradation pathway of atrazine has been well studied; however, little is known about its anaerobic degradation in the environment. In this study, an anaerobic microbial consortium capable of efficiently degrading atrazine was enriched from soil collected from an herbicide-manufacturing plant. Six metabolites including hydroxyatrazine, deethylatrazine, N-isopropylammelide, deisopropylatrazine, cyanuric acid, and the novel metabolite 4-ethylamino-6-isopropylamino-1,3,5-triazine (EIPAT) were identified, and two putative anaerobic degradation pathways of atrazine were proposed: a hydrolytic dechlorination pathway is similar to that seen in aerobic degradation, and a novel pathway initiated by reductive dechlorination. During enrichment, Denitratisoma, Thiobacillus, Rhodocyclaceae_unclassified, Azospirillum, and Anaerolinea abundances significantly increased, dominating the enriched consortium, indicating that they may be involved in atrazine degradation. These findings provide valuable evidence for elucidating the anaerobic catabolism of atrazine and facilitating anaerobic remediation of residual atrazine pollution.


Assuntos
Atrazina , Herbicidas , Poluentes do Solo , Atrazina/análise , Atrazina/química , Atrazina/metabolismo , Herbicidas/metabolismo , Solo/química , Anaerobiose , Consórcios Microbianos , Biodegradação Ambiental , Microbiologia do Solo , Poluentes do Solo/metabolismo
5.
J Hazard Mater ; 469: 133974, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518695

RESUMO

Pesticides and fertilisers are frequently used and may co-exist on farmlands. The overfertilisation of soil may have a profound influence on pesticide residues, but the mechanism remains unclear. The effects of chemical fertilisers on the environmental behaviour of atrazine and their underlying mechanisms were investigated. The present outcomes indicated that the degradation of atrazine was inhibited and the half-life was prolonged 6.0 and 7.6 times by urea and compound fertilisers (NPK) at 1.0 mg/g (nitrogen content), respectively. This result, which was confirmed in both sterilised and transfected soils, was attributed to the inhibitory effect of nitrogen fertilisers on soil microorganisms. The abundance of soil bacteria was inhibited by nitrogen fertilisers, and five families of potential atrazine degraders (Micrococcaceae, Rhizobiaceae, Bryobacteraceae, Chitinophagaceae, and Sphingomonadaceae) were strongly and positively (R > 0.8, sig < 0.05) related to the decreased functional genes (atzA and trzN), which inhibited hydroxylation metabolism and ultimately increased the half-life of atrazine. In addition, nitrogen fertilisers decreased the sorption and vertical migration behaviour of atrazine in sandy loam might increase the in-situ residual and ecological risk. Our findings verified the weakened atrazine degradation with nitrogen fertilisers, providing new insights into the potential risks and mechanisms of atrazine in the context of overfertilisation.


Assuntos
Atrazina , Herbicidas , Poluentes do Solo , Atrazina/química , Solo/química , Fertilizantes , Nitrogênio , Metaboloma , Microbiologia do Solo , Poluentes do Solo/metabolismo , Herbicidas/metabolismo , Biodegradação Ambiental
6.
J Agric Food Chem ; 72(13): 6931-6941, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38514379

RESUMO

Tembotrione is a triketone herbicide widely used for broad-spectrum weed control in corn but not registered for use in wheat. A wide collection of spring, winter, and EMS-derived mutant lines of wheat was evaluated for their response to tembotrione treatment. Two winter wheat (WW) genotypes (WW-1 and WW-2) were found to be least sensitive to this herbicide, surviving >6 times the field recommended dose (92 g ai ha-1) compared to the most sensitive genotype (WW-24). Further, HPLC analysis using [14C] tembotrione suggested that both WW-1 and WW-2 metabolized tembotrione rapidly to nontoxic metabolites. Pretreatment with a P450 inhibitor (malathion) followed by tembotrione application increased the sensitivity of WW-1 and WW-2 genotypes to this herbicide, suggesting likely involvement of P450 enzymes in metabolizing tembotrione similar to corn. Overall, our results suggest that the genotypes WW-1 and WW-2 can potentially be used to develop tembotrione-resistant wheat varieties.


Assuntos
Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Triticum/genética , Triticum/metabolismo , Cicloexanonas/farmacologia , Sulfonas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Zea mays/metabolismo
7.
Plant Physiol Biochem ; 208: 108506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461753

RESUMO

Acetolactate synthase inhibitors (ALS inhibitors) and glyphosate are two classes of herbicides that act by inhibiting an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. Besides amino acid synthesis inhibition, both herbicides trigger similar physiological effects in plants. The main aim of this study was to evaluate the role of glutathione metabolism, with special emphasis on glutathione S-transferases (GSTs), in the mode of action of glyphosate and ALS inhibitors in Amaranthus palmeri. For that purpose, plants belonging to a glyphosate-sensitive (GLS) and a glyphosate-resistant (GLR) population were treated with different doses of glyphosate, and plants belonging to an ALS-inhibitor sensitive (AIS) and an ALS-inhibitor resistant (AIR) population were treated with different doses of the ALS inhibitor nicosulfuron. Glutathione-related contents, GST activity, and related gene expressions (glutamate-cysteine ligase, glutathione reductase, Phi GST and Tau GST) were analysed in leaves. According to the results of the analytical determinations, there were virtually no basal differences between GLS and GLR plants or between AIS and AIR plants. Glutathione synthesis and turnover did not follow a clear pattern in response to herbicides, but GST activity and gene expression (especially Phi GSTs) increased with both herbicides in treated sensitive plants, possibly related to the rocketing H2O2 accumulation. As GSTs offered the clearest results, these were further investigated with a multiple resistant (MR) population, compressing target-site resistance to both glyphosate and the ALS inhibitor pyrithiobac. As in single-resistant plants, measured parameters in the MR population were unaffected by herbicides, meaning that the increase in GST activity and expression occurs due to herbicide interactions with the target enzymes.


Assuntos
Amaranthus , Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Peróxido de Hidrogênio/metabolismo , Resistência a Herbicidas , 60658 , Glutationa/metabolismo , Transferases/metabolismo
8.
J Hazard Mater ; 469: 133967, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38457978

RESUMO

Diclofop-methyl, an aryloxyphenoxypropionate (AOPP) herbicide, is a chiral compound with two enantiomers. Microbial detoxification and degradation of various enantiomers is garnering immense research attention. However, enantioselective catabolism of diclofop-methyl has been rarely explored, especially at the molecular level. This study cloned two novel hydrolase genes (dcmA and dcmH) in Sphingopyxis sp. DBS4, and characterized them for diclofop-methyl degradation. DcmA, a member of the amidase superfamily, exhibits 26.1-45.9% identity with functional amidases. Conversely, DcmH corresponded to the DUF3089 domain-containing protein family (a family with unknown function), sharing no significant similarity with other biochemically characterized proteins. DcmA exhibited a broad spectrum of substrates, with preferential hydrolyzation of (R)-(+)-diclofop-methyl, (R)-(+)-quizalofop-ethyl, and (R)-(+)-haloxyfop-methyl. DcmH also preferred (R)-(+)-quizalofop-ethyl and (R)-(+)-haloxyfop-methyl degradation while displaying no apparent enantioselective activity towards diclofop-methyl. Using site-directed mutagenesis and molecular docking, it was determined that Ser175 was the fundamental residue influencing DcmA's activity against the two enantiomers of diclofop-methyl. For the degradation of AOPP herbicides, DcmA is an enantioselective amidase that has never been reported in research. This study provided novel hydrolyzing enzyme resources for the remediation of diclofop-methyl in the environment and deepened the understanding of enantioselective degradation of chiral AOPP herbicides mediated by microbes.


Assuntos
Éteres Difenil Halogenados , Herbicidas , Maleatos , Propionatos , Quinoxalinas , Herbicidas/metabolismo , Hidrolases , Simulação de Acoplamento Molecular , Estereoisomerismo , Produtos da Oxidação Avançada de Proteínas
9.
J Agric Food Chem ; 72(8): 3937-3948, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354096

RESUMO

Resistance to the herbicide pyroxasulfone has slowly but steadily increased in agricultural weeds. The evolved resistance of one Lolium rigidum population has been attributed to the conjugation of pyroxasulfone to reduced glutathione, mediated by glutathione transferase (GST) activity. To determine if GST-based metabolism is a widespread mechanism of pyroxasulfone resistance in L. rigidum, a number of putative-resistant populations were screened for GST activity toward pyroxasulfone, the presence of GSTF13-like isoforms (previously implicated in pyroxasulfone conjugation in this species), tissue glutathione concentrations, and response to inhibitors of GSTs and oxygenases. Although there were no direct correlations between pyroxasulfone resistance levels and these individual parameters, a random forest analysis indicated that GST activity was of primary importance for L. rigidum resistance to this herbicide.


Assuntos
Herbicidas , Lolium , Sulfonas , Resistência a Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Isoxazóis/farmacologia , Glutationa/metabolismo
10.
J Environ Sci Health B ; 59(4): 183-191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38400726

RESUMO

Glyphosate is an ingredient widely used in various commercial formulations, including Roundup®. This study focused on tight junctions and the expression of inflammatory genes in the small intestine of chicks. On the sixth day of embryonic development, the eggs were randomly assigned to three groups: the control group (CON, n = 60), the glyphosate group (GLYP, n = 60), which received 10 mg of active glyphosate/kg egg mass, and the Roundup®-based glyphosate group also received 10 mg of glyphosate. The results indicated that the chicks exposed to glyphosate or Roundup® exhibited signs of oxidative stress. Additionally, histopathological alterations in the small intestine tissues included villi fusion, complete fusion of some intestinal villi, a reduced number of goblet cells, and necrosis of some submucosal epithelial cells in chicks. Genes related to the small intestine (ZO-1, ZO-2, Claudin-1, Claudin-3, JAM2, and Occludin), as well as the levels of pro-inflammatory cytokines (IFNγ, IL-1ß, and IL-6), exhibited significant changes in the groups exposed to glyphosate or Roundup® compared to the control group. In conclusion, the toxicity of pure glyphosate or Roundup® likely disrupts the small intestine of chicks by modulating the expression of genes associated with tight junctions in the small intestine.


Assuntos
60658 , Herbicidas , Animais , Herbicidas/toxicidade , Herbicidas/metabolismo , Glicina/toxicidade , Junções Íntimas/metabolismo , Galinhas/genética
11.
Sci Total Environ ; 923: 170949, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365020

RESUMO

The herbicide linuron can cause endocrine disrupting effects in Xenopus tropicalis frogs, including offspring that were never exposed to the contaminant. The mechanisms by which these effects are transmitted across generations need to be further investigated. Here, we examined transgenerational alterations of brain and testis DNA methylation profiles paternally inherited from grandfathers developmentally exposed to an environmentally relevant concentration of linuron. Reduced representation bisulfite sequencing (RRBS) revealed numerous differentially methylated regions (DMRs) in brain (3060 DMRs) and testis (2551 DMRs) of the adult male F2 generation. Key genes in the brain involved in somatotropic (igfbp4) and thyrotropic signaling (dio1 and tg) were differentially methylated and correlated with phenotypical alterations in body size, weight, hind limb length and plasma glucose levels, indicating that these methylation changes could be potential mediators of the transgenerational effects of linuron. Testis DMRs were found in genes essential for spermatogenesis, meiosis and germ cell development (piwil1, spo11 and tdrd9) and their methylation levels were correlated with the number of germ cells nests per seminiferous tubule, an endpoint of disrupted spermatogenesis. DMRs were also identified in several genes central for the machinery that regulates the epigenetic landscape including DNA methylation (dnmt3a and mbd2) and histone acetylation (hdac8, ep300, elp3, kat5 and kat14), which may at least partly drive the linuron-induced transgenerational effects. The results from this genome-wide DNA methylation profiling contribute to better understanding of potential transgenerational epigenetic inheritance mechanisms in amphibians.


Assuntos
Metilação de DNA , Herbicidas , Animais , Masculino , Testículo , Herbicidas/metabolismo , Espermatozoides , Linurona , Xenopus laevis , Xenopus , Epigênese Genética , Encéfalo
12.
Funct Plant Biol ; 512024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38417910

RESUMO

Black-grass (Alopecurus myosuroides ) is one of the most problematic agricultural weeds of Western Europe, causing significant yield losses in winter wheat (Triticum aestivum ) and other crops through competition for space and resources. Previous studies link black-grass patches to water-retaining soils, yet its specific adaptations to these conditions remain unclear. We designed pot-based waterlogging experiments to compare 13 biotypes of black-grass and six cultivars of wheat. These showed that wheat roots induced aerenchyma when waterlogged whereas aerenchyma-like structures were constitutively present in black-grass. Aerial biomass of waterlogged wheat was smaller, whereas waterlogged black-grass was similar or larger. Variability in waterlogging responses within and between these species was correlated with transcriptomic and metabolomic changes in leaves of control or waterlogged plants. In wheat, transcripts associated with regulation and utilisation of phosphate compounds were upregulated and sugars and amino acids concentrations were increased. Black-grass biotypes showed limited molecular responses to waterlogging. Some black-grass amino acids were decreased and one transcript commonly upregulated was previously identified in screens for genes underpinning metabolism-based resistance to herbicides. Our findings provide insights into the different waterlogging tolerances of these species and may help to explain the previously observed patchiness of this weed's distribution in wheat fields.


Assuntos
Herbicidas , Triticum , Triticum/genética , Triticum/metabolismo , Poaceae/genética , Herbicidas/farmacologia , Herbicidas/metabolismo , Plantas Daninhas , Aminoácidos/metabolismo
13.
J Agric Food Chem ; 72(10): 5176-5184, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38417018

RESUMO

Microbial degradation is a highly efficient and reliable approach for mitigating the contamination of sulfonylurea herbicides, such as chlorimuron-ethyl, in soil and water. In this study, we aimed to assess whether Kj-mhpC plays a pivotal role in the degradation of chlorimuron-ethyl. Kj-mhpC enzyme purified via prokaryotic expression exhibited the highest catalytic activity for chlorimuron-ethyl at 35 °C and pH 7. Bioinformatic analysis and three-dimensional homologous modeling of Kj-mhpC were conducted. Additionally, the presence of Mg+ and Cu2+ ions partially inhibited but Pb2+ ions completely inhibited the enzymatic activity of Kj-mhpC. LC/MS revealed that Kj-mhpC hydrolyzes the ester bond of chlorimuron-ethyl, resulting in the formation of 2-(4-chloro-6-methoxypyrimidine-2-amidoformamidesulfonyl) benzoic acid. Furthermore, the point mutation of serine at position 67 (Ser67) confirmed that it is the key amino acid at the active site for degrading chlorimuron-ethyl. This study enhanced the understanding of how chlorimuron-ethyl is degraded by microorganisms and provided a reference for bioremediation of the environment polluted with chlorimuron-ethyl.


Assuntos
Herbicidas , Pirimidinas , Poluentes do Solo , Klebsiella/genética , Klebsiella/metabolismo , Esterificação , Poluentes do Solo/metabolismo , Herbicidas/metabolismo , Compostos de Sulfonilureia/metabolismo , Íons
14.
Chemosphere ; 352: 141422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341000

RESUMO

Cyanobacterial blooms can impair drinking water quality due to the concomitant extracellular organic matter (EOM). As copper is often applied as an algicide, cyanobacteria may experience copper stress. However, it remains uncertain whether algal growth compensation occurs and how EOM characteristics change in response to copper stress. This study investigated the changes in growth conditions, photosynthetic capacity, and EOM characteristics of M. aeruginosa under copper stress. In all copper treatments, M. aeruginosa experienced a growth inhibition stage followed by a growth compensation stage. Notably, although chlorophyll-a fluorescence parameters dropped to zero immediately following high-intensity copper stress (0.2 and 0.5 mg/L), they later recovered to levels exceeding those of the control, indicating that photosystem II was not destroyed by copper stress. Copper stress influenced the dissolved organic carbon (DOC) content, polysaccharides, proteins, excitation-emission matrix spectra, hydrophobicity, and molecular weight (MW) distribution of EOM, with the effects varying based on stress intensity and growth stage. Principal component analysis revealed a correlation between the chlorophyll-a fluorescence parameters and EOM characteristics. These results imply that copper may not be an ideal algicide. Further research is needed to explore the dynamic response of EOM characteristics to environmental stress.


Assuntos
Cianobactérias , Herbicidas , Microcystis , Microcystis/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Plantas , Clorofila A/metabolismo , Herbicidas/metabolismo
15.
Environ Sci Pollut Res Int ; 31(14): 20970-20982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383926

RESUMO

Amide herbicides have been extensively used worldwide and have received substantial attention due to their adverse environmental effects. Here, a novel amidohydrolase gene was identified from a soil metagenomic library using diethyl terephthalate (DET) as a screening substrate. The recombinant enzyme, AmiH52, was heterologously expressed in Escherichia coli and later purified and characterized, with the highest activity occurring at 40 ℃ and pH 8.0. AmiH52 was demonstrated to have both esterase and amidohydrolase activities, which exhibited highly specific activity for p-nitrophenyl butyrate (2669 U/mg) and degrading activity against several amide herbicides. In particular, it displayed the strongest activity against propanil, with a high degradation rate of 84% at 8 h. A GC-MS analysis revealed that propanil was transformed into 3,4-dichloroaniline (3,4-DCA) during this degradation. The molecular interactions and binding stability were then analyzed by molecular docking and molecular dynamics simulation, which revealed that several key amino acid residues, including Tyr164, Trp66, Ala59, Val283, Arg58, His33, His191, and His226, are involved in the specific interactions with propanil. This study provides a function-driven screening method for amide herbicide hydrolase from the metagenomic libraries and a promising propanil-degrading enzyme (AmiH52) for potential applications in environmental remediation.


Assuntos
Herbicidas , Propanil , Herbicidas/metabolismo , Propanil/metabolismo , Amidoidrolases/metabolismo , Amidas , Simulação de Acoplamento Molecular , Esterases
16.
J Agric Food Chem ; 72(6): 3171-3179, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291808

RESUMO

Herbicide-resistant weeds are increasingly a problem in crop fields when exposed to similar chemistry over time. To avoid future yield losses, identifying herbicidal chemistry needs to be accelerated. We screened 50,000 small molecules using a liquid-handling robot and light microscopy focusing on pre-emergent herbicides in the family of cellulose biosynthesis inhibitors. Through phenotypic, chemical, genetic, and in silico methods we uncovered 6-{[4-(2-fluorophenyl)-1-piperazinyl]methyl}-N-(2-methoxy-5-methylphenyl)-1,3,5-triazine-2,4-diamine (fluopipamine). Symptomologies support fluopipamine as a putative antagonist of cellulose synthase enzyme 1 (CESA1) from Arabidopsis (Arabidopsis thaliana). Ectopic lignification, inhibition of etiolation, phenotypes including loss of anisotropic cellular expansion, swollen roots, and live cell imaging link fluopipamine to cellulose biosynthesis inhibition. Radiolabeled glucose incorporation of cellulose decreased in short-duration experiments when seedlings were incubated in fluopipamine. To elucidate the mechanism, ethylmethanesulfonate mutagenized M2 seedlings were screened for fluopipamine resistance. Two loci of genetic resistance were linked to CESA1. In silico docking of fluopipamine, quinoxyphen, and flupoxam against various CESA1 mutations suggests that an alternative binding site at the interface between CESA proteins is necessary to preserve cellulose polymerization in compound presence. These data uncovered potential fundamental mechanisms of cellulose biosynthesis in plants along with feasible leads for herbicidal uses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Herbicidas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Celulose/química , Parede Celular/metabolismo , Glucosiltransferases/química , Plântula/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo
17.
Pestic Biochem Physiol ; 198: 105737, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225083

RESUMO

Italian ryegrass (Lolium multiflorum L.) is an invasive species widely spread in croplands worldwide. The intensive use of glyphosate has resulted in the selection of resistance to this herbicide in Italian ryegrass. This work characterized the response to glyphosate of Italian ryegrass populations from the South and Southwest regions of Paraná, Brazil. A total of 44 Italian ryegrass populations were collected in farming areas, and were classified for glyphosate resistance with 75% of populations resistant to gloyphosate. Of these, 3 resistant (VT05AR, MR20AR and RN01AR) and three susceptible (VT07AS, MR05AS and RN01AS) of these populations were selected to determine the resistance level and the involvement of the target site mechanisms for glyphosate resistance. Susceptible populations GR50 ranged from 165.66 to 218.17 g.e.a. ha-1 and resistant populations from 569.37 to 925.94, providing RI ranging from 2.88 and 4.70. No mutation in EPSPS was observed in the populations, however, in two (MR20AR and RN02AR) of the three resistant populations, an increase in the number of copies of the EPSPs gene (11 to 57×) was detected. The number of copies showed a positive correlation with the gene expression (R2 = 0.86) and with the GR50 of the populations (R2 = 0.81). The increase in EPSPS gene copies contributes to glyphosate resistance in Italian ryegrass populations from Brazil.


Assuntos
Herbicidas , Lolium , 60658 , Lolium/genética , Lolium/metabolismo , Glicina/farmacologia , Glicina/metabolismo , Brasil , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Herbicidas/metabolismo , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética
18.
Appl Environ Microbiol ; 90(2): e0213123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38265214

RESUMO

The ability to utilize dissolved organic phosphorus (DOP) gives phytoplankton competitive advantages in P-limited environments. Our previous research indicates that the diatom Phaeodactylum tricornutum could grow on glyphosate, a DOP with carbon-phosphorus (C-P) bond and an herbicide, as sole P source. However, direct evidence and mechanism of glyphosate utilization are still lacking. In this study, using physiological and isotopic analysis, combined with transcriptomic profiling, we demonstrated the uptake of glyphosate by P. tricornutum and revealed the candidate responsible genes. Our data showed a low efficiency of glyphosate utilization by P. tricornutum, suggesting that glyphosate utilization costs energy and that the alga possessed an herbicide-resistant type of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase. Compared to the P-limited cultures, the glyphosate-grown P. tricornutum cells up-regulated genes involved in DNA replication, cell growth, transcription, translation, carbon metabolism, and many genes encoding antioxidants. Additionally, cellular C and silicon (Si) increased remarkably while cellular nitrogen (N) declined in the glyphosate-grown P. tricornutum, leading to higher Si:C and Si:N ratios, which corresponded to the up-regulation of genes involved in the C metabolism and Si uptake and the down-regulation of those encoding N uptake. This has the potential to enhance C and Si export to the deep sea when P is limited but phosphonate is available. In sum, our study documented how P. tricornutum could utilize the herbicide glyphosate as P nutrient and how glyphosate utilization may affect the element content and stoichiometry in this diatom, which have important ecological implications in the future ocean.IMPORTANCEGlyphosate is the most widely used herbicide in the world and could be utilized as phosphorus (P) source by some bacteria. Our study first revealed that glyphosate could be transported into Phaeodactylum tricornutum cells for utilization and identified putative genes responsible for glyphosate uptake. This uncovers an alternative strategy of phytoplankton to cope with P deficiency considering phosphonate accounts for about 25% of the total dissolved organic phosphorus (DOP) in the ocean. Additionally, accumulation of carbon (C) and silicon (Si), as well as elevation of Si:C ratio in P. tricornutum cells when grown on glyphosate indicates glyphosate as the source of P nutrient has the potential to result in more C and Si export into the deep ocean. This, along with the differential ability to utilize glyphosate among different species, glyphosate supply in dissolved inorganic phosphorus (DIP)-depleted ecosystems may cause changes in phytoplankton community structure. These insights have implications in evaluating the effects of human activities (use of Roundup) and climate change (potentially reducing DIP supply in sunlit layer) on phytoplankton in the future ocean.


Assuntos
Diatomáceas , Herbicidas , Organofosfonatos , Humanos , 60658 , Silício/metabolismo , Fósforo/metabolismo , Matéria Orgânica Dissolvida , Ecossistema , Fitoplâncton/metabolismo , Herbicidas/metabolismo , Carbono/metabolismo , Organofosfonatos/metabolismo
19.
Ecotoxicol Environ Saf ; 269: 115740, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042131

RESUMO

Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid ß-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments.


Assuntos
Dinoflagelados , Herbicidas , Microalgas , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Dinoflagelados/metabolismo , Proliferação Nociva de Algas , Fotossíntese , Herbicidas/metabolismo , Ácidos Graxos/metabolismo , Triazinas/toxicidade , Triazinas/metabolismo
20.
Ecotoxicol Environ Saf ; 269: 115780, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056123

RESUMO

The granulosa cells (GCs) of birds are essential for the reproduction and maintenance of populations in nature. Atrazine (ATR) is a potent endocrine disruptor that can interfere with reproductive function in females and Diaminochlorotriazine (DACT) is the primary metabolite of ATR in the organism. Melatonin (MT) is an endogenous hormone with antioxidant properties that plays a crucial role in development of animal germ cells. However, how ATR causes mitochondrial dysfunction, abnormal secretion of steroid hormones, and whether MT prevents ATR-induced female reproductive toxicity remains unclear. Thus, the purpose of this study is to investigate the protective effect of MT against ATR-induced female reproduction. In the present study, the GCs of quail were divided into 6 groups, as follows: C (Serum-free medium), MT (10 µM MT), A250 (250 µM ATR), MA250 (10 µM MT+250 µM ATR), D200 (200 µM DACT) and MD200 (10 µM MT+200 µM DACT), and were cultured for 24 h. The results revealed that ATR prevented GCs proliferation and decreased cell differentiation. ATR caused oxidative damage and mitochondrial dysfunction, leading to disruption of steroid synthesis, which posed a severe risk to GC's function. However, MT supplements reversed these changes. Mechanistically, our study exhibited that the ROS/SIRT1/STAR axis as a target for MT to ameliorate ATR-induced mitochondrial dysfunction and steroid disorders in GCs, which provides new insights into the role of MT in ATR-induced reproductive capacity and species conservation in birds.


Assuntos
Atrazina , Herbicidas , Melatonina , Doenças Mitocondriais , Animais , Feminino , Atrazina/toxicidade , Atrazina/metabolismo , Células da Granulosa/metabolismo , Herbicidas/toxicidade , Herbicidas/metabolismo , Melatonina/farmacologia , Doenças Mitocondriais/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/metabolismo , Esteroides/metabolismo , Codorniz/genética , Codorniz/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...